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Abstract

We consider the bilateral contract satisfaction problem arising from
electrical power networks due to the proposed deregulation of the
electric utility industry in the USA. Given a network and a (multi)set
of pairs of vertices (contracts) with associated demands, the goal is
to find the maximum number of simultaneously satisfiable contracts.
We study how four different algorithms perform in fairly realistic
settings; we use an approximate electrical power network from Col-
orado. Our experiments show that three heuristics outperform a the-
oretically better algorithm. We also test the algorithms on four types
of scenarios that are likely to occur in a deregulated marketplace. Our
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results show that the networks that are adequate in a regulated mar-
ketplace might be inadequate for satisfying all the bilateral contracts
in a deregulated industry.

1 Introduction

The U.S. electric utility industry is undergoing major structural changes in
an effort to make it more competitive [21, 11, 19, 12]. One major conse-
quence of the deregulation will be to decouple the controllers of the net-
work from the power producers, making it difficult to regulate the levels of
power on the network; consumers as well as producers will eventually be
able to negotiate prices to buy and sell electricity [18]. In practice, dereg-
ulation is complicated by the facts that all power companies will have to
share the same power network in the short term, with the network’s capac-
ity being just about sufficient to meet the current demand. To overcome
these problems, most U.S. states have set up an ISO (independent system
operator): a non-profit governing body to arbitrate the use of the network.
The basic questions facing ISOs are how to decide which contracts to deny
(due to capacity constraints), and who is to bear the costs accrued when
contracts are denied. Several criteria/policies have been proposed and/or
are being legislated by the states as possible guidelines for the ISO to select
a maximum-sized subset of contracts that can be cleared simultaneously
[18]. These include: (a) Minimum Flow Denied: The ISO selects the sub-
set of contracts that denies the least amount of proposed power flow. This
proposal favors clearing bigger contracts first. (b) First-in First-out: The
contract that comes first gets cleared first; this is the least discriminating to
the contractors. (c) Maximum Consumers Served: This clears the smallest
contracts first and favors the small buyers whose interests normally tend to
go unheard.

There are three key issues in deciding policies that entail specific mech-
anisms for selecting a subset of contracts: fairness of a given policy to pro-
ducers and consumers; the computational complexity of implementing a pol-
icy, and how sound a given policy is from an economic standpoint. (For
instance, does the policy promote the optimal clearing price/network uti-
lization etc.) Here we focus on evaluating the efficacy of a given policy with
regard to its computational resource requirement and network resource uti-
lization. It is intuitively clear that the underlying network, its capacity and
topology, and the spatial locations of the bilateral contracts on the network,
will play an important role in determining the efficacy of these policies.
We do not discuss here the fairness and economics aspects of these poli-
cies: these are subjects of a companion paper. The work reported here is
done as part of a simulation project at the Los Alamos National Labora-
tory. We carry out the experimental analysis of several algorithms for si-
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multaneously clearing a maximal number of bilateral contracts. The algo-
rithms were chosen according to provable performance, ability to serve as
a proxy for some of the above-stated policies, and computational require-
ment. The algorithms are as follows; see � 3 for their specification. The
ILP-RANDOMIZED ROUNDING (RR) algorithm has a provable performance
guarantee under certain conditions. The computational resource require-
ment is quite high, but the approach also provides us with an upper bound
on any optimal solution and proves useful in comparing the performance
of the algorithms. The LARGEST-FIRST HEURISTIC (LF) is a proxy for the
Minimum Flow Denied policy. The SMALLEST-FIRST HEURISTIC (SF) serves
as a proxy for the Maximum Contracts Served policy. The RANDOM-ORDER
HEURISTIC (RO) clears the contracts in the random order. This algorithm
was chosen as a proxy for the First-in First-out policy. Such a policy is prob-
ably the most natural clearing mechanism and is currently in place at many
exchanges.

We used a coarse representation of the Colorado electrical power net-
work (see � 4) to qualitatively compare the four algorithms discussed above
in fairly realistic settings. The realistic networks differ from random net-
works and structured networks in the following ways: (i) Realistic net-
works typically have a very low average degree. In fact, in our case the
average degree of the network is no more than 3. (ii) Realistic networks are
not very uniform. One typically sees one or two large clusters (downtown
and neighboring areas) and small clusters spread out throughout. (iii) For
most empirical studies with random networks, the edge weights are chosen
independently and uniformly at random from a given interval. However,
realistic networks typically have very specific kinds of capacities since they
are constructed with particular design goal.

From our preliminary analysis, it appears that although the simple heuris-
tic algorithms do not have worst-case guarantees, they outperform the the-
oretically better randomized rounding algorithm. We tested the algorithms
on four carefully chosen scenarios. Each scenario was designed to test the
algorithms and the resulting solutions in a deregulated setting. The empiri-
cal results show that networks that are capable of satisfying all demand in a
regulated marketplace can often be inadequate for satisfying all (or even a
acceptable fraction) of the bilateral contracts in a deregulated market. Our
results also confirm intuitive observations: e.g., the number of contracts
satisfied crucially depends on the scenario and the algorithm.

As far as we are aware, this is the first study to investigate the efficacy of
various policies for contract satisfaction in a deregulated power industry.
Since it was done in fairly realistic settings, the qualitative results obtained
here have implications for policy makers. To compare the algorithms in
a quantitative and (semi-)rigorous way, we employ statistical tools and ex-
perimental designs. Although many of the basic tools are standard in statis-
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tics, the use of formal statistical methods in experimental algorithmics for
analyzing/comparing the performance of heuristics has not been investi-
gated to the best of our knowledge. We believe that such statistical meth-
ods should be investigated further by the experimental algorithmics com-
munity for deriving more quantitative conclusions when theoretical proofs
are hard or not very insightful. Our results can also be applied in other
settings, such as bandwidth-trading on the Internet. See, e.g., [2]. Finally,
to our knowledge, previous researchers have not considered the effect of
the underlying network on the problems; this is an important parameter
especially in a free-market scenario.

The rest of this paper is organized as follows. The problem definitions
and algorithms considered are described in Sections 2 and 3 respectively.
Our experimental setup is discussed in Section 4. Section 5 presents our
experimental results and analyzes them and Section 6 concludes the paper.
In the appendix, we discuss interesting optimization issues that arise from
deregulation, and also show problem instances on which our algorithms
do not perform well.

2 Problem Definitions

We briefly define the optimization problems studied here. We are given an
undirected network (the power network) � � ����� with capacities �� for
each edge � and a set of source-sink node pairs ���� ���, � � � � 	. Each pair
���� ��� has: (i) an integral demand reflecting the amount of power that ��
agrees to supply to �� and (ii) a negotiated cost of sending unit commodity
from �� to ��. As is traditional in the power literature, we will refer to the
source-sink pairs along with the associated demands as a set of contracts. In
general, a source or sink may have multiple associated contracts. We find
the following notation convenient to describe the problems. Denote the set
of nodes by 
 . The contracts are defined by a relation � � �
�
�����
so that tuple ��� � �� �� � � denotes a contract between source � and sink
 for � units of commodity at a cost of � per unit of the commodity. For
� � ��� � �� �� � � we denote ��������� � �, ���	��� � , ������ � �
and ������� � �. Corresponding to the power network, we construct a
digraph � � �� � � � � � ��� ��� ��� with source �, sink node �, capacities
� � �� 	 � and costs �� � �� 	 � as follows. For all � � �, define new
vertices �� and �. Let � � ��� 
 � � �� and � � �� 
 � � ��. Each
edge ��� �� from � is present in � as the two arcs ��� �� and ��� �� that
have the same capacity as ��� �� has in �, and with cost �. In addition,
for all � � ��� � �� �� � �, we introduce: (i) arcs ���� �� and ���� with
infinite capacity and zero cost; (ii) arc ��� ��� with capacity ������ � �
and cost �; and (iii) arc ��� �� with capacity ������ � � and cost equaling
�������. By this construction, we can assume without loss of generality
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that each node can participate in exactly one contract. A flow is simply an
assignment of values to the edges in a graph, where the value of an edge is
the amount of flow traveling on that edge. The value of the flow is defined
as the amount of flow coming out of � (or equivalently the amount of flow
coming in to �). A generic feasible flow � � ����� � � � ��� �� � ��� in � is
any non-negative flow that: (a) respects the arc capacities, (b) has � as the
only source of flow and � as the only sink. Note that for a given � � �, in
general it is not necessary that ����� � ����	. For a given contract � � �, �
is said to be satisfied if the feasible flow � in � has the additional property
that for � � ��� � �� ��, ����� � ����	 � �; i.e., the contractual obligation of
� units of commodity is shipped out of � and the same amount is received
at . Given a power network ������, a contract set� is feasible (or satisfied)
if there exists a feasible flow � in the digraph � that satisfies every contract
� � �. Let � � ��������� � ��� ����� �

�
��
 ������.

In practice, it is typically the case that � does not form a feasible set.
As a result we have two possible alternative methods of relaxing the con-
straints: (i) relax the notion of feasibility of a contract and (ii) try and find
a subset of contracts that are feasible. Combining these two alternatives
we define the following types of “relaxed feasible” subsets of �. We will
concern ourselves with only one variant here. A contract set� � � � is a 0/1-
contract satisfaction feasible set if, �� � ��� � �� �� � ��, ����� � ����	 � �.

Definition 2.1 Given a graph������ and a contract set�, the (0/1-VERSION,
MAX-FEASIBLE FLOW) problem is to find a feasible flow � in� such that

�
��
� ����

is maximized where �� forms a 0/1-contract satisfaction feasible set of contracts.
In the related (0/1-VERSION, MAX-#CONTRACTS) problem, we aim to find a
feasible flow � in � such that 
��
 is maximized, where �� forms a 0/1-contract
satisfaction feasible set of contracts.

Though such electric flow problems have some similarities with those
from other practical situations, there are many basic differences such as re-
liability, indistinguishability between the power produced by different gen-
erators, short life-time due to inadequate storage, line effects etc. [22]. The
variants of flow problems related to power transmission studied here are
intuitively harder than traditional multi-commodity flow problems, since
we cannot distinguish between the flow “commodities” (power produced by
different generators). As a result, current solution techniques used to solve
single/multi-commodity flow problems are not directly applicable to the
problems considered here.

3 Description and Discussion of Algorithms

We work on the (0/1-VERSION, MAX-#CONTRACTS) problem here. Let �
and � respectively denote the number of vertices and edges in the net-
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work �. In [6], it was shown that (0/1-VERSION, MAX-#CONTRACTS) is
NP-hard; also, unless NP � !"" , it cannot be approximated to within a
factor of ������ for any fixed # $ �, in polynomial time. Thus, we need to
consider good heuristics/approximation algorithms. First, there are three
simple heuristics. The SMALLEST-FIRST HEURISTIC considers the contracts
in non-decreasing order of their demands. When a contract is considered,
we accept it if it can be feasibly added to the current set of chosen contracts,
and reject it otherwise. The LARGEST-FIRST HEURISTIC is the same, except
that the contracts are ordered in non-increasing order of demands. In the
RANDOM-ORDER HEURISTIC, the contracts are considered in a random or-
der.

We next briefly discuss an approximation algorithm of [6]. This has
proven performance only when all source vertices �� are the same; however,
this algorithm extends naturally to the multi-source case which we work
on. An integer linear programming (ILP) formulation for the problem is
considered in [6]. We have indicator variables �� for the contract between ��
and ��, and variables %��� for each ���� ��� pair and each edge �. The intended
meaning of �� is that the total flow for ���� ��� is ����; the meaning of %���
is that the flow due to the contract between ���� ��� on edge � is %���. We
write the obvious flow and capacity constraints. Crucially, we also add the
valid constraint %��� � ���� for all � and �. In the integral version of the
problem, we will have �� � ��� ��, and the %��� as non-negative reals. We
relax the condition “�� � ��� ��” to “�� � ��� ��” and solve the resultant
LP; let �� be the LP’s optimal objective function value. We perform the
following rounding steps using a carefully chosen parameter & $ �. (a)
Independently for each �, set a random variable '� to � with probability
��(&, and '� �� � with probability � ��(&. (b) If '� � �, we will choose to
satisfy ��  #� of ���� ���’s contract: for all � � �, set %��� �� %����� #�(��. (c)
If '� � �, we choose to have no flow for ���� ���: i.e., we will reset all the %���
to �. A deterministic version of this result based on pessimistic estimators, is
also provided in [6]; see [6] for further details.

Theorem 3.1 ([6]) Given a network � and a contract set �, we can find an ap-
proximation algorithm for (0/1-VERSION, MAX-#CONTRACTS) when all source
vertices are the same. Let )"� be the optimum value of the problem, and � be the
number of edges in �. Then, for any given # $ �, we can in polynomial time find a
subset of contracts �� with total weight ��)"� �	
���)"�(���������� ��� such
that for all � � ��, the flow is at least �� #���.

4 Experimental Setup and Methodology

To test our algorithms experimentally, we used a network corresponding
to a subset of a real power network along with contracts that we gener-
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ated using different scenarios. The network we used is based on the power
grid in Colorado and was derived from data obtained from PSCo’s (Public
Service Company of Colorado) Draft Integrated Resources Plan listing of
power stations and major sub stations. The network is shown in Figure 1.
We restricted our attention to major trunks only.

Sources: The location and capacities of the sources was roughly based
upon data obtained from PSCo’s Draft Integrated Resources Plan listing
of power stations and major sub stations.

Sinks: The location and capacity of the sinks were roughly based upon the
demographics of the state of Colorado. In order to determine the location
and capacity of the sinks we used the number of households per county ob-
tained from the US Census bureau. By assigning counties (load) to specific
sub stations (sink nodes) the data for the sinks were derived.

The following three websites can be accessed to obtain the necessary infor-
mation:

� http://www.census.gov/population/estimates/county/co-
99-1/99C1 08.txt gives the population per county as of 1995.

� http://www.census.gov/datamap/www/08.html contains a map
of Colorado counties.

� Finally, http://ccpg.basinelectric.com/ is the PSCo Colorado
Website.

Edges: The edge capacities were derived from test data obtained by run-
ning the network through a max-flow program with the source and sink
capacities at maximum and no capacity limits placed upon the connecting
edges. The total sink capacity equaled the total source capacity. The sink
capacity was distributed to the various sink nodes in correspondence with
population percentages assigned to each sink node. The edge capacities
were then roughly assigned and the model was rerun through the max-flow
program until all edge limits were defined. The criteria used for defining
all of edge limits was that the network must be feasible under the condition
of maximum source/sink capacity. Once the feasibility criteria was satis-
fied, some edge limits were set at capacity, while others were set higher
than capacity in order to provide flexibility in contract development for the
later problems.

Software and Data Format. DIMACS (http://dimacs.rutgers.edu)
has developed a standard format for storing network data for input into
existing network solvers. For the network being examined the need exists
to include two directed arcs for each edge since the network is undirected.
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Addition of a master source and a master sink node with edges to the indi-
vidual source and sink nodes was needed in order to conform to the format
requirement of a single source and a single sink node. The edge capacities
of the edges from the master source and sink nodes were set to be the ca-
pacities of the respective individual source or sink node.

4.1 Creation and Description of Test Cases

All the test cases were generated from the basic model. The general ap-
proach we used was to fix the edge capacities and generate source-sink
contract combinations, using the capacities and aggregate demands in the
basic model as upper bounds. To ensure that the test cases we generated
corresponded to (1) difficult problems, i.e. infeasible sets of contracts, and
(2) problems that might reasonably arise in reality, we developed several
scenarios that included an element of randomness (described in � 4.2).

4.2 Description of Scenarios

The current implementation is still based upon a network which should
be feasible only if the total source capacity is greater than the total sink
capacity and the only requirement is that the total sink capacity be satisfied
regardless of which source provides the power. Scenarios 1, 2, 3 and 4 are
based around the network with total generating capacity 6249 MW, and
reduced sink capacities near 4400MW combined.

1. Scenario 1: This scenario is based upon the network with a total
sink capacity (i.e. customer demand) of 4400MW. The source capac-
ity (supplier’s maximum production capacity) was reduced by a con-
stant proportion from the total generating capacity based upon pop-
ulation density of Colorado counties. The source capacity of the net-
work was reduced until the running the MAXFLOW code indicated
that the maximum flow in the network to be slightly less than the
demand. This reduction in the sources total production capacity in-
creased the chances of refusing customers (contracts).

2. Scenario 2: For this scenario, we took the basic network and in-
creased the sink capacity while the source capacity remained fixed.

3. Scenario 3: For generating instances for this scenario, the edge ca-
pacities were adjusted, reduced in most cases, to limit the network
to a maximum flow of slightly more than 4400MW given its source
and sink distribution. Here, if the load is allowed to be fulfilled from
any source (as is normally done with centralized control), the net-
work and the edge capacities are enough to handle a total of 4400MW.
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However, if we insist that a particular source needs to serve a partic-
ular sink (as is done in bilateral contract satisfaction), then the capac-
ities may not be enough to handle the same load of 4400MW.

4. Scenario 4: For this scenario, we took the network of Scenario 3 and
biased the selection of source nodes towards the lower valued source
units.

4.3 Methodology

We worked with the four scenarios and ran all four algorithms for each. For
the three greedy heuristics the implementations are fairly straightforward,
and we used public-domain network flow codes. Implementing the ran-
domized rounding procedure requires extra care. The pessimistic estimator
approach of [6] works with very low probabilities, and requires significant,
repeated re-scaling in practice. Thus we focus on the randomized version
of the algorithm of [6]; five representative values of # varying from *� to *�
were chosen. We believe that satisfying a contract partially so that a con-
tract is assigned less than .5 of the required demand is not very realistic.
For each scenario, and for each of the 5 values of #, the programs imple-
menting the algorithms under inspection produced 30 files from which the
following information could be extracted:

1. The running time of each algorithm.

2. Total number of satisfied contracts by each algorithm.

3. The LP upper bound on the IP and thus an upper bound on the ap-
proximations given by the algorithms.

4. The IP approximation and objective function value.

The number 30 was chosen to ensure that a statistically “large” sample
of each measure would be provided in order to make valid statistical in-
ference. We consider two parameters to measure the performance of our
algorithms – (i) the running time and (ii) the quality of the solution ob-
tained. More attention is given to the quality of solution measure since
from a social standpoint contract satisfaction may leave little room for find-
ing solutions that are far from optimal.

We now describe how these measures are used to make inferences about
the qualitative performance of these algorithms with respect to one another
and independently. Since the intent is to make inferences concerning solu-
tion quality, a measure of this sort must be derived from the data gener-
ated. To do this, the data provided by the LP relaxation is examined. The
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���	
� � ���� provides the best-case number or upper bound on the objec-
tive function value our algorithms can produce for a scenario. Hence, if an
algorithm produces an objective function value of ���	
�, it has produced
an optimal solution for a given scenario. For a given algorithm � and sce-
nario � , let �  ���	
 denote the number of contracts that are satisfied by �
under � . The fraction

�	
 �
�  ���	

���	
�

provides a measure of the quality of the algorithm’s solution.

4.4 Experimental Objective

The objective of our experiments was to find out which, if any, of the algo-
rithms discussed here performs better than the others, in terms of quality
of solution and running time for different contract scenarios. The design
of the experiment was developed keeping this objective in mind. Since the
performance depends on the type of algorithm used and the contract sce-
nario, these are our factors of interest. As mentioned in the section 4.3, for
a given #, 30 runs were performed for each algorithm-scenario pair. We
perform two separate sets of experiments, one for the quality of solution as
measured by �	 and the other for running time. This was done because the
quality of solution and running time were independent of each other. The
number of contracts satisfied do not depend upon the length of the time it
takes to run the algorithm.

5 Results and Analysis

5.1 General Conclusions

We first present general conclusions obtained from our results and experi-
mental analysis. These will be elaborated on subsequently.
1. Although there exist instances where the three heuristics produce solu-
tions as large as ���� times the optimal fractional solution, most of our tests
show that we could find integral solutions fairly close to optimal.
2. Our experiments show that different scenarios make a significant differ-
ence in the type of solutions obtained. For example, the quality of solution
obtained using the fourth scenario is significantly worse than the first three
scenarios. The sensitivity to the scenarios poses interesting questions for in-
frastructure investment. The market will have to decide the cost that needs
to be paid for expecting the necessary quality of service. It also brings forth
the equity-benefit question: namely, who should pay for the infrastructure
improvements?
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3. It is possible that for certain scenarios, the underlying network is inca-
pable of supporting even a minimum acceptable fraction of the bilateral
contracts. This observation – although fairly intuitive – provides an ex-
tremely important message, namely, networks that were adequate to ser-
vice customers in a completely regulated power market might not be ad-
equate in deregulated markets. This makes the question of evicting the
bilateral contracts more important.
4. One expects a trade-off between the number of contracts satisfied and
the value of #, for the randomized rounding algorithm: as # increases, and
the demand condition is more relaxed, a higher number of contracts should
get satisfied. But our experiments show that the change in the number of
contracts satisfied for different values of # is insignificant. Also, & �  gave
the best solutions in our experiments.
5. In practical situations, the Random-Order heuristic would be the best to
use since it performs very close to the optimal in terms of quality of solution
and has very low running time. Furthermore, though the Smallest-First
heuristic does even better on many of our experiments, Random-Order is a
natural proxy to model contracts arriving in an unforeseen way. Also, since
the heuristics deliver solutions very close to the LP upper bound, we see
that this LP bound is tight and useful. To further evaluate the randomized
rounding algorithm, we need to implement its deterministic version [6],
which is a non-trivial task.

5.2 Statistical Background

We use a statistical technique known as analysis of variance (ANOVA) to
test whether differences in the sample means of algorithms and scenarios
reflect differences in the means of the statistical populations that they came
from or are just sampling fluctuations. This will help us identify which
algorithm and scenarios perform the best.1

ANOVA has the following three advantages over individual �-tests2

1The populations in each of the groups are assumed to be normally distributed and
have equal variances. The effect of violation of ANOVA assumptions of normality and
homogeneity of variances have been tested in the literature ([10]) and the results show:

� Non-normality has negligible consequences on type-I and II error probabilities un-
less the populations are highly skewed or the sample is very small.

� When the design is balanced, i.e. the number of observations are the same for
each group, violation of homogeneity of variance assumption has negligible con-
sequences on the accuracy of type-I error probabilities.

2�-test checks for the significance of the difference in the means of two samples. It can
assess whether the difference in sample means is just due to sampling error or they really
are from two populations with different means.
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when the number of groups being compared is greater than two. In our
case, we have four algorithms and four scenarios. Standard statistics ter-
minology for a hypothesis that we wish to test, is null hypothesis.

� It gives accurate and known type-I error probability.3

� It is more powerful i.e. if null hypothesis is false, it is more likely to
be rejected.

� It can assess the effects of two or more independent variables simul-
taneously.

5.3 Mathematical Model

Quality of Solution: We first describe the experiment for the quality of
solution i.e. �	
 . We use a two-factor ANOVA model since our experiment
involves two factors which are:

1. The algorithms: ��� � � �� � � and �.

2. The scenario: � � + � �� � � and �.

Following classical statistics terminology, we will sometimes refer to
algorithms as treatments and the scenarios as blocks. We will use � to de-
note the set of algorithms and � to denote the set of scenarios. For each
algorithm-scenario pair we have 30 observations (or replicates). When testing
the efficacy of the algorithms, we use 4 algorithms, each having 120 ob-
servations (30 for each scenario) from the corresponding population. The
design of experiment used here is a fixed-effect complete randomized block.
Fixed-effect because the factors are fixed as opposed to randomly drawn
from a class of algorithms or scenarios; the conclusions drawn from this
model will hold only for these particular algorithms and scenarios. Com-
plete implies that the number of observations are the same for each block.
Randomized refers to the 30 replicates being drawn randomly. We wish to
test the hypothesis:

Is the mean quality of solution provided by different algorithms
the same, against the alternative hypothesis that some or all of
these means are unequal?

The model for randomized block design includes constants for measuring
the scenario effect (block effect), the algorithm effect (treatment effect) and

3The probability of rejecting a null hypothesis when it is actually true.
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a possible interaction between the scenarios and the algorithms. The ap-
propriate mathematical model is as follows:

,�� � -� .� � � � �.��� � /���

where ,�� is the measurement (�	
) for the 	�0 sample within the ��0 al-
gorithm and the +�0 scenario. .� is the algorithm effect. � is the scenario
effect. �.��� captures the interaction present between the algorithms and
the scenarios. /�� is the random error.

We use S-Plus [16] software to run two-factor ANOVA to test the fol-
lowing three different null hypotheses.

1. Are the means given by the 4 different algorithms equal? The null
hypothesis here is, �� � .� � .� � .� � .�.

2. Are the means given by the 4 different scenarios equal? The null hy-
pothesis here is, �� � �� � �� � �� � ��.

3. Is there any interaction between the two factors? The null hypothesis
here is, �� � �.��� � �.

The results of two-factor ANOVA are shown in Table 1 and Table 2. In
the following discussion, we explain the meaning of each column in Ta-
ble 1. 12 refers to the degrees of freedom, �� refers to the sum of squared
deviations from the mean. 3� refers to the mean square error, which is the
sum of squares divided by the degrees of freedom.4

4The sum of squares for the algorithm factor can be calculated as:

��� � ��������� �� ����
�

where � is the number of replicates, � is the number of scenarios, � ��� is the mean of algo-
rithm � across all scenarios and � ��� is the grand mean across all algorithms and scenarios.
Recall that in our case � � �� and � � � yielding a total sample size of 120.

The sum of squares for scenario factor can be calculated as:

��	 � ������ ��� �� ����
�

where as before � is the number of replicates, � is the number of algorithms and � ��� is the
mean of scenario � across all algorithms. Again, in our case � � �� and � � �.

The sum of squares for algorithms and scenario interaction is:

���	 � ������� ��� � �� ��� � 	�� � 		��

�

Here � ��� is the mean of observations for the algorithm � scenario � pair. 	�� and 		� are
respectively the estimated least square values of �� and 	� . The sum of squares “within”
refers to the squared difference between each observation and the mean of the scenario and
algorithm of which it is a member. It is also referred as the residual sum of squares. This
can be calculated as:

��
 � ������������ �� ����
�
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The �-value gives the smallest level of significance at which the null
hypothesis can be rejected.5 The lower the �-value, the lesser the agreement
between the data and the null hypothesis. Finally the 2 -test is as follows.
To test the null hypothesis, i.e., whether the population means are equal,
ANOVA compares two estimates of 4�. The first estimate is based on the
variability of each population mean around the grand mean. The second is
based on the variability of the observations in each population around the
mean of that population. If the null hypothesis is true, the two estimates
of 4� should be essentially the same. Otherwise, if the populations have
different means, the variability of the population mean around the grand
mean will be much higher than the variability within the population. The
null hypothesis in the 2 -test will be accepted if the two estimates of 4� are
almost equal.

In a two-factor fixed-effect ANOVA, three separate 2 -tests are performed:
two tests for the factors, and the third for the interaction term. The null hy-
pothesis for the first factor can be written as:

�	
� � -��� � -��� � � � � � -��

which is equivalent to writing: �� � .� � .� � .� � .�. The 2 -test is:

2	 �
��	(�5  ��

���(56�� ��

and the null hypothesis for the second factor can be written as:

�

� � -��� � -��� � � � � � -��

which is equivalent to writing: �� � �� � �� � �� � ��. The 2 -test is:

2
 �
��
(�6  ��

���(56�� ��

and the null hypothesis for the interaction term can be written as:

�	

� � �.��� � �*

The total sum of squares is

��� � ��� � ��	 � ���	 � ��


5To obtain a 
-value for say ��, the algorithm effect, we would look across the row
associated with 3 degree of freedom in the numerator and 464 degrees of freedom in the
denominator in the � -distribution table and find the largest value that is still less than the
one obtained experimentally. From this value, we obtain a 
-value of 0 for ��.
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Source 12 �� 3� 2 -test �-value
Scenario (Block) 3 0.14 0.05 43.38 0

Algorithm (Treatment) 3 22.78 7.59 6792.60 0

Scenario:Algorithm 9 0.12 0.01 15.90 0

Residuals 464 0.40 .0008

Total 479 23.45

Table 1: Results of Two-Factor ANOVA: This table shows results of two-
factor ANOVA where the factors are algorithms and scenarios. The mea-
surement is the quality of solution, given by �	
 . The �-values show that
the algorithm effect, scenario effect and the interaction between the algo-
rithms and scenarios are all significant at any level of confidence.

The 2 -test is:

2	
 �
��	
(�5  ���6  ��

���(56�� ��

If this 2 -ratio is close to 1, the null hypothesis is true. If it is consider-
ably larger – implying that the variance between means is larger than the
variance within a population – the null hypothesis is rejected. The 2 distri-
bution table should be checked to see if the 2 -ratio is significantly large.

The results in Table 1 show that all the above three null hypothesis are
rejected at any significance level. This implies that the performance (mea-
sured by �	
) of at least one of the algorithms is significantly different from
the other algorithms. Also, different scenarios make a difference in the per-
formance. Finally, the scenarios and the algorithms interact in a significant
way. The interaction implies that the performance of the algorithms are
different for different scenarios.

5.3.1 Contrasts

The next question of interest is what really caused the rejection of the null
hypothesis; just knowing that at least one of the algorithms is different does
not help us identify which algorithm is significantly different. To answer
this we use a procedure called contrast. A contrast � among 5 population
means (-�) is a linear combination of the form

� � ����-� � ��-� � ��-� � � � �� ��-�
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Performance Measure: Quality of Solution (in �)
RR SF LF RO Scenario Means

Scenario 1 ,���=48.68 ,���=99.73 ,���=97.97 ,���=97.78 , ���=86.02

Scenario 2 ,���=46.91 ,���=99.56 ,���=98.38 ,���=98.93 , ���=85.94

Scenario 3 ,���=45.69 ,���=99.25 ,���=97.10 ,���=98.82 , ���=85.22

Scenario 4 ,���=46.99 ,���=98.03 ,���=88.65 ,���=93.41 , ���=81.77

Algo. Means ,���=47.07 ,���=99.14 ,���=95.51 ,���=97.24 ,��� = 84.74

Table 2: The Mean Values of the Quality of Solution: This table shows the
mean values of the quality of solution for each algorithm and each scenario.

such that the sum of contrast coefficients ���� is zero. In the absence of
true population means, we use the unbiased sample means which gives
the estimated contrast as:

�� � ����,� � ��,� � ��,� � � � �� ��,� *

The contrast coefficients ��, ��, � � �, �� are just positive and negative num-
bers that define the particular hypothesis to be tested. The null hypothesis
states that the value of a parameter of interest for every contrast is zero, i.e.,
�� � � � �. The value of the contrast is tested by an 2 -test to see if the ob-
served value of the contrast is significantly different from the hypothesized
value of zero.

Table 2 shows the average value of the quality of solution for each
algorithm-scenario pair. e.g. ,��� means that we fix � � � and + � � and
take the average of ,�� over all 	. From Table 2, it is clear that the random-
ized rounding algorithm (RR) is different from all the other algorithms for
all four scenarios. On an average, RR algorithm satisfies 49� less contracts
than the Largest-First (LF) heuristic and 50� less than the Random-Order
(RO) heuristic and 52� less contracts than the Smallest-First (SF) heuristic.
The difference between SF, RO and LF heuristics appears only marginal.
Based on this observation, we constructed the following contrast that tests
if RR is statistically significantly different from the other three algorithms:

��� �
�

�
�,���� �

�

�
�,���� �

�

�
�,����,���

Using the value of algorithm means from Table 2 we can calculate the
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value of ��� (7 stands for the quality of solution) to be equal to 0.50.6 The
sum of squares of a contrast is expressed as:

������� �
�����

�

����
� (
�

Here �� are the coefficients of the contrast and 
� � �� is the number of
observations (i.e. sample points for each algorithm across all scenarios).
This results in ������� � *��. Now we can use the following F-test to
see the significance of the contrast:

�������(3�� � 2 ��� ����

MSE stands for the mean square error of the residuals. The contrast has
one degree of freedom and residuals have 464 degrees of freedom (see ta-
ble 1). F = 22.68/.0008 = 28350, since the observed value of F-test is greater
than the critical 2 -value given in the 2 -distribution table, for any signifi-
cance level, the null hypothesis is rejected. This confirms our earlier obser-
vation that the RR algorithm is significantly inferior in performance com-
pared to the other three algorithms. The sum of squares of ������� � *��
shows that 98� of the variation in factors sum of squares (total factors sum
of squares being 23.05 i.e. total SS - residual SS, see table 2) is due to the
difference in RR algorithm versus the other three algorithms.

Table 2 shows that the first three scenarios clear about 86� of the op-
timal number of contracts while under the fourth scenario, the number of
contracts cleared is less than 82� of the optimal. Even though the difference
in the number of cleared contracts is not very big, one would be curious to
find out if the difference in performance under the first three scenarios ver-
sus the fourth scenario is significant or not. To answer this we created the
following contrast which is orthogonal7 to the first contrast (���):

��� �
�

�
�, ���� �

�

�
�, ���� �

�

�
�, ����, ���

Just like ���, we can calculate the value of ��� using table 2:

�������(3�� � 2 ��� ���� � �*��(*���� � ���

Again, the null hypothesis is rejected implying that the fourth scenario is
indeed significantly different from the other three scenarios.

6The table values are shown in percentages, but here we use actual values.
7Two contrasts �� and �� are said to be orthogonal if the sum of the products of their cor-

responding coefficients is zero. It is desirable to have independent or orthogonal contrasts
because independent tests of hypotheses can be made by comparing the mean square of
each such contrast with the mean square of the residuals in the experiment. Each contrast
has only one degree of freedom.
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Now we look at two more contrasts to check if SF and LF are signifi-
cantly different (���) and LF and RO are significantly different (���).

��� � ,��� ,���

��� � ,��� ,���

�������(3�� � 2 ��� ���� � *���(*���� � �*�

�������(3�� � 2 ��� ���� � �*���(*���� � ���*�

For both ��� and ���, the observed value of the F-test is greater than
the critical 2 -value given in the 2 -distribution table, the null hypothesis in
both cases are rejected, implying that SF provides a better solution than LF
and also that RO performs significantly better than LF.

In summary, all algorithms show significantly different performance
when measured in terms of quality of solution. On an average, the best
solution is given by the SF heuristic and the worst by the RR.

Running Time: Tables 3 and 4 show results of the same experiment
when performance is measured by the running time of the algorithm. The
factors, number of observations, kinds of tests, etc. remain the same as be-
fore, except the performance measure. Table 3’s results clearly demonstrate
that different algorithms take significantly different time to run and that
different scenarios have significantly different running time. The interac-
tion term is significant at any level of confidence implying that the running
time of an algorithm is different for different scenarios.

Table 4 shows that the RR algorithm takes noticeably more time to run
as compared to the other three heuristics. Among the three heuristics, LF
and RO take about the same time but SF takes about 19 megaticks more
than the LF and RO. Similarly, scenario 3 and 4 take about the same time
but scenario 1 and 2 look different. To test all the above mentioned obser-
vations, we create the following different contrasts:

��	 �
�

�
�,���� �

�

�
�,���� �

�

�
�,����,���

��	 �
�


�,���� �

�


�,����,���

��	 � ,��� ,���
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Source 12 �� 3� 2 -test �-value
Scenario (Block) 3 21152 7050.8 56.97 0

Algorithm (Treatment) 3 2161199 720399.8 5821.07 0

Scenario:treatment 9 28156 3128.5 47.78 0

Residuals 464 30381 65.5

Total 479 2240888

Table 3: Results of Two-Factor ANOVA: This table shows results of two-
factor ANOVA where the factors are algorithms and scenarios. The mea-
surement is the running time of the algorithm-scenario pair. The �-values
show that the algorithm effect, scenario effect and the interaction between
the algorithms and scenarios are all significant at any level of confidence.

Performance Measure: Running Time (in Megaticks)
RR SF LF RO Scenario Means

Scenario 1 ,���=163.33 ,���=41.23 ,���=24.57 ,���=25.50 ,���=63.66

Scenario 2 ,���=218.23 ,���=49.63 ,���=29.73 ,���=30.23 ,���=81.96

Scenario 3 ,���=181.70 ,���=45.70 ,���=23.30 ,���=26.43 ,���=69.28

Scenario 4 ,���=184.33 ,���=44.53 ,���=27.00 ,���=27.27 ,���=70.78

Algo. Means ,���=186.90 ,���=45.27 ,���=26.15 ,���=27.36 ,��� = 71.42

Table 4: The Mean Values of the Running Time: This table shows the
mean values of the running time for each algorithm and each scenario.
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��	 � , ��� , ���

All the above contrasts are orthogonal to each other. The first contrast,
��	 (here � stands for running time), checks if the RR algorithm takes more
time to run than the other three heuristics. The second contrast, ��	, will
find if the SF heuristic is significantly different from the LF and RO heuris-
tic. The third contrast, ��	, checks if the LF and RO heuristics take about
the same time to run. Finally, contrast ��	, check if the first scenario takes
less time to run than the second scenario. The results of all the contrasts are
shown below.

�����	�(3�� � 2 ��� ���� � ������*�(��*� � ����*�

�����	�(3�� � 2 ��� ���� � ���*�(��*� � ���*��

�����	�(3�� � 2 ��� ���� � �*�(��*� � �*��

�����	�(3�� � 2 ��� ���� � ����*�(��*� � ���*��

As can be seen by looking at the F-distribution table, all the above con-
trasts except ��	 show that the observed value of the 2 -test is greater than
the critical 2 -value. Hence the null hypothesis i.e. �� � ��	 � � where
� � �� � � can be rejected at any level of significance. This confirms our
earlier hypothesis that RR indeed takes longer to run than the other three
heuristics. SF takes more time to run than the LF and RO heuristics and the
second scenario takes significantly more time to run than the first scenario.

The mean difference in running time across different algorithms shows
that all algorithms are significantly different in terms of running time ex-
cept for the Largest-First and the Random-Order heuristics. These two heuris-
tics take about the same time to run and indeed a contrast done i.e. ��	 on
LF and RO proves that and the null hypothesis, �� � ��	 � �, is accepted.

The randomized rounding algorithm takes significantly more time to
run than any of the other heuristics. The gap in running time narrows
when RR is compared against SF. RR takes 141 megaticks more time than
the SF heuristic, 160 megaticks more than the LF and RO. SF takes more
time to run than LF and RO but it clears more contracts than LF and RO.

All the above analysis was performed while keeping the value of #
constant at 0.1. The performance of the randomized rounding algorithm8

does not change in any significant way, both in terms of �	
 and run-
ning time when # varied from 0.1 to 0.5. So all the above results hold for
# � �*�� �*� �*�� �*� and �*�.9

8Other heuristics do not depend on the value of �.
9The results are available from the authors upon request.
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Summary: It is clear that SF heuristic clears the most contracts, almost as
good as the optimal but takes more running time as compared to LF and
RO. However, it takes only a quarter of the time as compared to RR. As far
as scenarios go, the first scenario clears most contracts in the least amount
of time. From a practical standpoint, the RO heuristic seems to be the best
since it performs very well both in terms of running time and quality of
solution and is trivial to implement. It performs very close to optimal in
terms of clearing contracts and yet takes minimal time to do it as compared
to the other algorithms. The RR algorithm, although it gives good theoreti-
cal lower bounds, is not very appropriate for real-life situations where both
time and a high level of contract satisfaction have a very high priority.

6 Discussion and Concluding Remarks

We carried out an empirical study to evaluate the quality and running time
performance of four different market clearing mechanisms.

One heuristic was based on using a relaxation of integer linear program
followed by randomized rounding of the fractional solution to yield an ap-
proximate integral solution. Although the algorithm had a provable per-
formance guarantee, experiments suggest that the algorithm is not likely
to be practically useful given the running time and the quality of solution
produced. The result is not entirely unexpected; it has been observed that
many approximation algorithms that are designed to work in the worst
case typically do not have a very good average case behavior.

We also studied three different simple heuristics: experimental results
suggest that each is likely to perform better than the theoretically provable
approximation algorithm. This is in spite of the fact that it is very easy
to construct instances where the heuristics have unboundedly poor perfor-
mance guarantee.

One of the heuristics: the random-order heuristic was studied to emu-
late a simple “first-come first-serve” type clearing mechanism that is cur-
rently employed by many ISO. The heuristic performs surprisingly well
even compared to a bound on an optimal solution obtained via linear pro-
gramming. The results suggest that this simple clearing mechanism cur-
rently employed might result in near-optimal utilization of the network
resources.

Our overall assessment is that for the purposes of developing large-
scale microscopic-simulations of the deregulated power industry, the three
heuristic methods give sufficiently good performance in terms of the qual-
ity of solution and the computational time requirement.
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Figure 1: This shows the network with node numbered as they are refer-
enced in all scenarios and edge capacities labeled at values used for Sce-
narios 1 & 2. The placement of the nodes and edges are what is probably
the final form. The least number of edges cross and the nodes in the upper
right are spread out a little bit maintaining the general feel of the distribu-
tion while allowing easier reading.
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Figure 2: Shows the maximum capacities of the nodes and edges at the
values used in Scenario 2. The positioning of the nodes and edges have
not been changed to the same as the previous figure.22
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Figure 3: Shows the same network as the maximum capacities except the
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Figure 4: Shows the general network with the node capacities labeled with
the sink capacities reduced to a total of 4400 MW. These are the basic ca-
pacities used in the creation of Scenarios 1, 2, 3, & 4.24
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Appendix
A Illustrative Examples

Example 1. This example illustrates the issues encountered as a result of
deregulation. Figure 5(a) shows an example in which there are two power
plants � and �, and two consumers. Let us assume that each consumer
has a demand of 1 unit. Before deregulation, say both � and � are owned
by the same company. If we assume that the plants have identical operat-
ing and production costs, then the demands can be satisfied by producing 1
unit of power at each plant. Now assume that due to deregulation, � and �
are owned by separate companies. Further assume that � provides power
at a much cheaper rate and thus both the consumers sign contracts with �.
It is clear that both the consumers now cannot get power by � alone. Al-
though the total production capacity available is more than total demand
and it is possible to route that demand through the network under cen-
tralized control, it is not possible to route these demands in a deregulated
scenario.
Example 2. Here, the graph consists of a simple line as shown in Fig-
ure 5(b). We have three contracts each with a demand of 1. The capacity of
each edge is also 1. A feasible solution is ����� ��� � ����� ��� � ����� ��� �
�. The crucial point here is that the flow originating at �� may not go to �� at
all — since power produced at the sources are indistinguishable, the flow
from �� joins a stream of other flows. If we look at the connected compo-
nents induced by the edges with positive flow, we may have �� and �� in a
different component. Thus we do not have a path or set of paths to round
for the ���� ���-flow. This shows a basic difference between our problem and
standard multi-commodity flow problems, and indicates that traditional
rounding methods may not be directly applicable.
Example 3: In this example, we illustrate how different policies can yield
different solutions. The graph is shown in Figure 6 with edge capacities as
listed. Again, we have three contracts, whose details are given as follows:

1. Contract 1 – ���� ��� demand �� �  and cost/unit �� � *�

2. Contract 2 – ���� ��� demand �� � � and cost/unit �� � �

3. Contract 3 – ���� ��� demand �� � � and cost/unit �� � 

The various solutions obtained under different policies are given below:

1. (0/1-VERSION, MAX-FEASIBLE FLOW): Two possible solutions: (i)
����� ��� � , (ii) ����� ��� � ����� ��� � �. Both solution route 2 units
of flow in the network.
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Figure 6: Example illustrating the various solutions under different con-
tracts.

2. (0/1-VERSION, MAX-#CONTRACTS): In contrast to the previous case
only one solution is possible: ����� ��� � ����� ��� � �. This also routes
2 units of flow.

B Worst-Case Examples

The three heuristic methods of � 3 can be shown to have worst case per-
formance guarantee that is ����. (Recall that the performance guarantee
of an approximation algorithm for a maximization problem � is the supre-
mum of the ratio of the optimal solution to the heuristic solution over all in-
stances 5 of �.) Example 4 shows that all the heuristics can perform poorly
w.r.t. an optimal solution. This is not too surprising given that the optimal
solution gets to look at all of the input before clearing the contracts.

Example 4: Consider a network with two nodes � and � joined by an edge
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�����. The capacity of the edge ����� is 8 9 �. There is an even number
� of contracts ���� ���� * * * � ���� ���. Odd-numbered contracts have demand
of 1 unit and the sources and sinks of these contracts are distributed as
follows: source-nodes ��� ��� * * * ���� are located at node � and their cor-
responding consumers ��� ��� * * * ���� are located at �. Let us call this set
Odd-Set. For the even numbered contracts (denoted Even-set) we have a de-
mand of � � �

�� per contract and the source sink locations are reversed: the
sources are located at � and the sinks at �. Note that

1. All Odd-set contracts have demand that is less than every contract in
Even-Set.

2. In the absence of any other contracts, only one Odd-set contract can
be cleared; similarly, exactly one Even-set contract can be cleared.

Now consider how many contracts can be satisfied by the each of three
heuristic methods.

1. SMALLEST-FIRST HEURISTIC will clear only one contract ���� ���.

2. LARGEST-FIRST HEURISTIC will also clear exactly one contract ���� ���.

3. RANDOM-ORDER HEURISTIC will also perform poorly with high prob-
ability. This is because there is are a total of �� ways to arrange the
contracts and roughly only )���� ���

�
� ��� good ways to do it.

4. An optimal solution can clear all the contracts simultaneously, since
the flows from Odd-set appropriately cancel the flows from Even-Set.
Thus the performance guarantee of the SMALLEST-FIRST HEURISTIC
and LARGEST-FIRST HEURISTIC is ����. The performance guarantee
of RANDOM-ORDER HEURISTIC is also ���� with high probability.

Example 5: Again, we have a single edge as the network. Denote the edge
by ����� as before, with the endpoints being � and � respectively and the
edge capacity being �. We have � contracts. As before we divide them into
Even-Set and Odd-set of contracts. The contracts’ demands are strictly in-
creasing: the �	� contract has demand � � �� ��#. The value # is chosen so
that � 9 # 9 � and ��  ��# $ �. It is clear that SMALLEST-FIRST HEURIS-
TIC can clear all the contracts, while LARGEST-FIRST HEURISTIC can clear
exactly one contract. Again, a simple calculation shows that RANDOM-
ORDER HEURISTIC will perform poorly with high probability.
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